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Spatial persistent large deviations probability of surface growth processes governed by the Edwards-
Wilkinson dynamics,Pxsx,sd, with −1øsø1 is mapped isomorphically onto the temporal persistent large
deviations probabilityPtst ,sd associated with the stochastic Markovian random walk problem. We show using
numerical simulations that the infinite family of spatial persistent large deviations exponentsuxssd character-
izing the power-law decay ofPxsx,sd agrees, as predicted on theoretical grounds by Majumdar and Bray[Phys.
Rev. Lett. 86, 3700 (2001)], with the numerical measurements ofutssd, the continuous family of exponents
characterizing the long-time power law behavior ofPtst ,sd. We also discuss the simulations of the spatial
persistence probability corresponding to a discrete model in the Mullins-Herring universality class, where our
discrete simulations do not agree well with the theoretical predictions perhaps because of the severe finite-size
corrections which are known to strongly inhibit the manifestation of the asymptotic continuum behavior in
discrete models involving large values of the dynamical exponent and the associated extremely slow conver-
gence to the asymptotic regime.
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Non-Markovian Gaussian stochastic processes are very
widely encountered in a large variety of nonequilibrium
physical problems[1]. Considerable theoretical[2] and ex-
perimental[3–6] efforts have recently been devoted to un-
derstanding the first-passage statistics in such nonequilib-
rium systems. Recent work[7] has revealed that the time-
dependent history of the non-Markovian processes can be
described by a nontrivial exponent,ut, called the persistence
exponent, which depends on the dimensionality of the prob-
lem, d, and the precise details of the non-Markovian nature
of the underlying stochastic dynamics characterizing the phe-
nomenon. The persistence exponentut describes the
asymptotic power-law decay of the persistence probability
fPtstd~ t−utg which measures the probability that a stochastic
variable has not changed its characteristics up to timet. As a
consequence,ut provides useful quantitative predictions con-
cerning the temporal evolution characteristics of a given sto-
chastic system. Once the persistence probability behavior is
found, one can immediately calculate the asymptotic behav-
ior of the first-passage probability,Fstd, which represents the
distribution of the time when the stochastic variable under
considerationfirst reaches a fixed reference value:Fstd=
−dPtstd /dt. In addition, one can also obtain the mean first-
passage time which provides the representative time scale
characterizing the stability of the dynamical process. Such a
time scale might be of interest for the study of the evolution
of fluctuating interfaces or for undestanding the behavior of a
collection of stochastic spin variables. To be specific, we
mention thatPtstd andut are thetemporalpersistence prob-
ability and exponent, respectively, since we also discussspa-
tial persistencePxsxd and the corresponding exponentux.

Of particular interest in the field of surface growth phe-
nomena is the role played by the dynamics of interfaces
which are governed by thermal fluctuations. An illustrative

category of such interfaces is described by linear Langevin
equations of the type

] hsx,td/] t = − s− ¹2dz/2hsx,td + jsx,td, s1d

wherehsx,td is the step height fluctuation corresponding to
the lateral step positionx, at timet, jsx,td is a white uncor-
related Gaussian noise, andz is the dynamical exponent. It
turns out that fluctuating interfaces are of crucial importance
at very small scales(i.e., nanoscales) involved in the fabri-
cation of current electronic devices. In addition to the tradi-
tional way of analyzing various aspects of growth processes
based on the dynamical scaling behavior of the interface
width and temporal and spatial correlation functions[8,9], it
has been shown that persistence properties provide an addi-
tional tool of investigation for understanding the long time
evolution of surface growth phenomena, due to the ability of
the nontrivial persistence exponents to identify the underly-
ing universality class of the dynamical process[10] and the
presence of the nonlinearities associated with the dynamical
evolution [11]. However, much broader and more general
information can be extracted from the natural generalization
of the persistence through the probability of persistent large
deviations[12], Ptst ,sd, where −1øsø1. A closely related
concept, the sign-time distribution, has been introduced in
Ref. [13]. Ptst ,sd measures the probability that the average
sign,Savstd=s1/tde0

t sgnfhsx,t0+ t8d−hsx,t0dgdt8, remains al-
ways above a particular values up to timet measured from
the initial timet0. It turns out thatPtst ,sd provides an infinite
family of temporal persistence exponents,utssd, associated
with the power-law decay ofPtst ,sd observed to exist at
large time scales for systems belonging to different univer-
sality classes[14] relevant for surface growth. In the limit
s→1, the exponent of persistent large deviations reaches the
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value of the nontrivial persistence exponent, i.e.,utss=1d
=ut. We note that the concept of persistent large deviations
naturally generalizes the concept of persistence exponent
from a single discrete exponentut characterizing the univer-
sality class to a more general and deeper concept of a con-
tinuous function,utssd, of the persistent exponents character-
izing the stochastic dynamics.

The dynamics of the spatially extended systems with fluc-
tuations governed by stochastic differential equations can be
further elucidated by looking, in addition to the statistical
tools mentioned above, at thespatial analog of the temporal
persistence, i.e., the spatial persistence probability[15,16],
Pxsxd, and its associated exponents.Pxsxd represents the
probability that the height stochastic variable, measured at a
fixed time t, does not reach its initial valuehsx0,td up to a
longer distancex measured from the initial positionx0. The-
oretical [15] and numerical studies[16] indicate that the
power-law decay ofPxsxd is described by two different ex-
ponents, the steady-statesuSSd and the finite initial conditions
suFICd spatial persistence exponents depending on the selec-
tion rules applied tox0: (i) uSS is obtained ifx0 is sampled
from the entire set of the steady-state configurational sites,
and(ii ) uFIC is obtained ifx0 is sampled from a subset of the
steady-state sites characterized byfinite height and height
derivatives. The aim of this paper is to establish numerically
the concept ofspatial persistent large deviations probability,
Pxsx,sd with −1øsø1, as a natural generalization of the
spatial persistence probability concept. We also show that
Pxsx,sd measured for growth processes in the well-studied
Edwards-Wilkinson[17] universality class[described by Eq.
(1) with z=2] can be mapped isomorphically ontoPtst ,sd of
the simple random walk stochastic problem. This mapping
possibility is inspired by the work of Majumdar and Bray
[15], who have shown in a recent Letter that thespatial
persistence probability characteristics of growth processes
involving the interfacial height stochastic variablehsx,td
with the dynamics described by Eq.(1) can be mapped onto
the temporal persistence characteristics of the “random
walk” processes of the typednx/dtn=hstd, where n=sz−d
+1d /2 andhstd is a white noise as well. The purpose of the
current paper is to show that this exact mapping, as expected,
works for the generalized(large deviations) persistence prob-
ability and the corresponding continuous family of persis-
tence exponents as well, and to numerically calculateuxssd
for the important class of processes controlled by the
Edwards-Wilkinson equation.

We consider the average sign of the interfacial height sto-
chastic variable measured at a fixed timet with respect to the
original value corresponding to the initial positionx0,

Savsxd =
1

x
E

0

x

sgnfhsx0 + x8,td − hsx0,tdgdx8. s2d

The spatial persistent large deviations probability is defined,
in analogy with its temporal correspondent, as the probability
that the average signSav remains persistently above a par-
ticular values, with −1øsø1, up to a longer distancex
measured from the initial positionx0,

Pxsx,sd ; ProbhSavsx8d ù s, ∀ x8 ø xj. s3d

We provide numerical evidence showing thatPxsx,sd has a
power-law behavior forx,L, whereL is the typical length
scale in the numerical simulations(i.e., system size), inde-
pendent of the choice of the average sign parameters,

Pxsx,sd ~ x−uxssd, s4d

where the spatial persistent large deviations exponentuxssd
depends continuously on the parameters that appears in the
definition of the probability. The importance ofPxsx,sd lies
in the fact that it provides aninfinite family of persistence
exponents, instead of only one exponent as in the case of
Pxsxd. Obviously, Pxsx,s=1d and its associated exponent
uxss=1d are precisely the spatial persistence probability and
the nontrivial persistence exponent(uSS or uFIC, depending
on the sampling procedure applied tox0), respectively. The
opposite limit s→−1 is trivial in the sense thatPxsx,s=
−1d=1 independent ofx and as a consequenceuxss=−1d=0.

The s dependence of the temporal persistent large devia-
tions exponents is known exactly for the simple random walk
case, which is one of the few analytically solved persistence
problems[18],

utssd =
2uts1d

p
arctanÎ1 + s

1 − s
. s5d

The mapping[15] between thetemporal properties of the
random walker(RW) problem and thespatial properties of
the Edwards-Wilkinson(EW) fluctuating interfaces implies
that the expression of Eq.(5) also applies to the distribution
of the spatial persistent large deviations exponent as a func-
tion of s. This conjecture is verified numerically in this study.

In this paper, we have carried out the first application of
the spatial persistent large deviations concept to the case of
s1+1d-dimensional fluctuating interfaces characterized by
the EW dynamical equation. Using the configuration of the
interface corresponding to a fixed time of the order of the
time required by the interface width to saturate(i.e., t,Lz),
we have computedPxsx,sd as the fraction of lattice sitesxj

(with j =1,2, . . . ,L−1) which maintained their stochastic
variableSav persistently above a fixeds value, up to a dis-
tancexj +x. The initial measurement points,xj, are sampled
from the entire set of the steady-state interfacial profile. The
numerical integration of the stochastic equation is performed
using the simple forward-time centered-space representation
[19]. We have used numerical systems of sizeL,1000 and
we have averaged the results over manys,1000d indepen-
dent runs too btain convergent statistics.

In Fig. 1, we show the results forPxsx,sd as a function of
x for s1+1d-dimensional EW interfaces simulated numeri-
cally. We display ten log-log spatial persistent large devia-
tions curves versus the distancex for ten values of the aver-
age sign parameters (i.e., s= +1, +0.8, . . . ,−0.8). We
observe thatPxsx,sd,x−uxssd for x,L /2, while for larger
values ofx and sù0 there is a downward deviation of the
probability from the power-law behavior due to finite-size
limitations. Except for the curve corresponding tos=1,
which gives the usual spatial persistence exponentuSS
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.0.50, in agreement with Refs.[15,16], all the other curves
with s,1 provide information concerning spatial behavior
of the interface fluctuations.

The temporal persistent large deviations probability of the
random walk model is shown in Fig. 2. We have used similar
s values, as in the case ofPxsx,sd described above.Ptst ,sd
shows a clear power-law behavior versust. We find that
Ptst ,s=1d is characterized by an exponent of 0.50, in agree-
ment with the theoretical valueut=1/2. Individual temporal

persistent large deviations exponentsutssd are extracted from
the linear regions of the log-log plots ofPtst ,sd versust and
they are compared in Fig. 3 to the corresponding spatial set
of exponentsuxssd for the EW interfaces.

The level of agreement betweenPxsx,sd corresponding to
the EW dynamical equation andPtst ,sd of the RW case can
be seen in Fig. 3. To generate this figure we have used an
increment of the average sign parameterssd of 0.1. We ob-
serve that the two sets of exponents,utssd anduxssd, overlap
very well within the errors of our simulations, showing that
the mapping procedure involved in this study is perfectly
applicable. Both cases are in agreement with the theoretical
prediction of Eq.(5). We have also simulated a discrete sto-
chastic growth model, the so-called Family model, which is
theoretically known to exactly belong to the EW universality
class[11]. The Family model results(not shown here) for
Pxsx,sd and uxssd are very similar to those shown in Fig. 1
since they have identical stochastic dynamics.

Despite the downward deviation of the probability
Pxsx,sd from the power-law behavior due to finite-size limi-
tations, we have checked that larger system sizes would pro-
vide a wider range of distances over which the spatial per-
sistence large deviations exponent can be extracted with a
better precision. This can be seen in Fig. 4.

Another case of interest for epitaxial surface dynamics is
growth under surface diffusion minimizing the local curva-
ture, which belongs asymptotically to the Mullins-Herring
(MH) [21] universality class[i.e., Eq. (1) with z=4]. The
exact mapping prediction by Majumdar and Bray[15] sug-
gests that the spatial persistence properties of thecontinuum
version of the growth models belonging to this universality
class could be mapped onto the temporal persistence charac-
teristics of the random acceleration problem described by the
stochastic random equationd2x/dt2=hstd with an analyti-
cally known exponent ofut=1/4 [20]. One expects to obtain
uSS=0 anduFIC=1/4 [15] when measuring the steady-state
and finite initial conditions regimes ofPxsxd, respectively, for
the Mullins-Herring surface growth dynamics. An example
of this case is thes1+1d-dimensional model introduced by

FIG. 1. Log-log plot ofPsx,sd vs x for the EW equation based
on the direct numerical integration of Eq.(1) with z=2, using a
system of sizeL=1000. The average sign parameter takes ten dif-
ferent values decreasing froms=1 (bottom curve) to s=−0.8 (top
curve) with an average sign differenceDs=0.2. All spatial persis-
tent large deviations probabilities show power-law decay vs dis-
tance for x,L /2. The finite-size effects are responsible for the
deviations of the probabilities from the power-law trend at large
values ofx.

FIG. 2. Log-log plot of simulatedPtst ,sd vs t for the RW prob-
lem. The system size isL=500 and the average sign parameter
takes ten different values decreasing froms=1 (bottom curve) to
s=−0.8 (top curve) with Ds=0.2 between successive probability
curves. All temporal persistent large deviations probabilities show
power-law behavior vs time.

FIG. 3. utssd and uxssd vs s as extracted from the power-law
decay of Pst ,sd (for the RW problem) and Psx,sd (for the EW
fluctuating interfaces), respectively. The increment of the average
sign parameter isDs=0.1. The continuous curve represents the the-
oretical prediction of Eq.(5).
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Kim and Das Sarma[22]. This discrete solid-on-solid atom-
istic model, the so-called larger curvature(LC) model [22],
is known to belong asymptotically to the MH universality
class. As a consequence, we focus on the measurement of
PFICsxd for the discrete LC model[22], sincePSSsxd is trivi-
ally described by a null exponent. The definition ofPFICsxd
involves the selection of the subset of sites characterized by
finite height and height derivatives. One possibility would be
to sample over the subset of sites placed on the average level.
However, it turns out that a system withL=200, which is the
typical system size in our simulations, usually has only a
couple of discrete positions on the average level. For this
reason, we have sampled over all the lattice sitesxj with the
height variable(measured with respect to the average level)
within a band of values characterized by a widthw [i.e.,
−w/2øhsxjdøw/2], wherew is taken to be smaller than the
maximum magnitude of interface fluctuations. This selection
ensured the possibility of sampling over a reasonable number
of lattice sites presumably sufficient for good statistical re-
sults ofPFICsxd.

In Fig. 5, we show thex dependence ofPFICsxd corre-
sponding to the LC discrete model for three values ofw: 30,
70, and 110, respectively. The steady-state probability is
shown for comparison. We note thatPFICsxd does not display
the expected power-law behavior as a function ofx. As the
bandwidthw increases, more and more lattice sites are in-
cluded in the sampling subset, andPFICsxd tends to reach the
behavior displayed byPSSsxd. In addition, we observe that
when using a numerical system withL=200, PSSsxd has a
rather linear dependence onx, for 50,x,200. The impos-
sibility to recover the theoretically predicted behavior of
PFICsxd may be due to the reduced system size used in our
simulations. This limitation is imposed by the requirement of
measuring the probabilityPFICsxd using an ensemble of
steady-state configurations that can be achieved only by us-
ing an extensive computational time,L4. We note that re-
ducing or increasing the system size by a factor of 2 did not
produce any qualitative change in the overall behavior of
PFICsxd or PSSsxd. In addition, we have checked that the di-
rect numerical integration of Eq.(1) with z=4 provides re-

sults consistent with the discrete LC model. Also, it turns out
that similar probability curves are obtained for solid-on-solid
models belonging asymptotically to the molecular beam ep-
itaxy universality class[such as thes1+1d-dimensional DT
model [23]]. We believe that our problem with the spatial
persistencePxsxd for the LC model belonging to the MH
universality class[22] arises most likely from the severe
finite-size problems in simulating systems with large values
sz=4d of the dynamical exponent. Large dynamical exponent
implies very slow lateral correlations, which considerably
complicates studying steady-state behavior in the MH uni-
versality problem. In fact, this issue is very well known in
traditional studies of dynamical scaling involving surface
phenomena characterized by a large value of the dynamical
exponent[24]. A large variety of stochastic discrete models
show long-time transients and they cross over very slowly to
their corresponding asymptotic behavior. Only extensive
simulations of stochastic discrete models in the MH univer-
sality class can provide the asymptotic dynamical scaling
associated with the continuous limit of Eq.(1) with z=4.
This forbids us from pursuing further measurements of
Pxsx,sd for the MH universality class and checking the va-
lidity of the mapping procedure, which remains an interest-
ing open problem.

To conclude, we have shown numerically that the spatial
persistent large deviations probability represents a possible
generalization of the spatial persistence probability, provid-
ing a useful family of spatial exponents for the surface
growth phenomena. We have mapped these exponents into
the family of temporal persistent large deviations exponents
obtained from the evolution of a simple stochastic “random
walk” process. We have established the validity of this gen-
eralization for the case of fluctuating interfaces described by
the Edwards-Wilkinson evolution equation. However, the
similar problem involving the Mullins-Herring universality
class remains open since the corresponding discrete LC
model [22] simulation shows severe finite-size problems.

This work is partially supported by NSF-DMR-MRSEC
and U.S. ONR.

FIG. 4. Log-log plot ofPxsx,sd for s=1 corresponding to the
EW equation based on the direct numerical integration of Eq.(1)
with z=2, using three system sizes, as shown in the legend. The
straight line represents the fit forL=104 simulation, providing an
exponent of 1/2.

FIG. 5. Numerical results ofPFICsxd and PSSsxd for the LC
discrete model with system sizeL=200. The measurements are per-
formed from steady-state configurations.PFICsxd probabilities have
been obtained by using three different band widths, as shown in the
legend.PFICsxd does not display a power-law behavior as a function
of x over the entire range of system size.
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