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Spatial persistent large deviations probability of surface growth processes governed by the Edwards-
Wilkinson dynamics,P,(x,s), with —1<s=<1 is mapped isomorphically onto the temporal persistent large
deviations probabilityP(t,s) associated with the stochastic Markovian random walk problem. We show using
numerical simulations that the infinite family of spatial persistent large deviations expaf&s)teharacter-
izing the power-law decay d?,(x,s) agrees, as predicted on theoretical grounds by Majumdar and Brgg.

Rev. Lett. 86, 3700(200D], with the numerical measurements &fs), the continuous family of exponents
characterizing the long-time power law behavior Ryft,s). We also discuss the simulations of the spatial
persistence probability corresponding to a discrete model in the Mullins-Herring universality class, where our
discrete simulations do not agree well with the theoretical predictions perhaps because of the severe finite-size
corrections which are known to strongly inhibit the manifestation of the asymptotic continuum behavior in
discrete models involving large values of the dynamical exponent and the associated extremely slow conver-
gence to the asymptotic regime.
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Non-Markovian Gaussian stochastic processes are vemategory of such interfaces is described by linear Langevin
widely encountered in a large variety of nonequilibrium equations of the type
physical problemg1]. Considerable theoretic®] and ex-
perimental[3—6] efforts have recently been devoted to un- Ih(X,B/dt =~ (= V)?2h(x,t) + &(x,1), 1)

derstanding the first-passage statistics in such nonequilib- . . . .
rium systems. Recent work] has revealed that the time- whereh(x,t) is the step height fluctuation corresponding to

dependent history of the non-Markovian processes can b€ lateral step positior, at timet, £(x,t) is a white uncor-
described by a nontrivial exponers, called the persistence related Gaussian noise, amds the dynamical exponent. It
exponent, which depends on the dimensionality of the probturns out that fluctuating interfaces are of crucial importance
lem, d, and the precise details of the non-Markovian natureat very small scaleg.e., nanoscalgsnvolved in the fabri-
of the underlying stochastic dynamics characterizing the phesation of current electronic devices. In addition to the tradi-
nomenon. The persistence exponefit describes the tional way of analyzing various aspects of growth processes
asymptotic power-law decay of the persistence probabilitpased on the dynamical scaling behavior of the interface
[P,(t) «t~%] which measures the probability that a stochasticwidth and temporal and spatial correlation functi¢8g), it
variable has not changed its characteristics up to tims a has been shown that persistence properties provide an addi-
consequencey, provides useful quantitative predictions con- tional tool of investigation for understanding the long time
cerning the temporal evolution characteristics of a given sto€volution of surface growth phenomena, due to the ability of
chastic system. Once the persistence probability behavior #e nontrivial persistence exponents to identify the underly-
found, one can immediately calculate the asymptotic behaving universality class of the dynamical procg4§] and the
ior of the first-passage probabilitif(t), which represents the presence of the nonlinearities associated with the dynamical
distribution of the time when the stochastic variable unde€volution [11]. However, much broader and more general
considerationfirst reaches a fixed reference valug(t)= information can be extracted from the natural generalization
—dP,(t)/dt. In addition, one can also obtain the mean first-Of the_persistence through the probability of persistent large
passage time which provides the representative time scaf€viations[12], Py(t,s), where ~I=s<1. A closely related
characterizing the stability of the dynamical process. Such §oncept, the sign-time distribution, has been introduced in
time scale might be of interest for the study of the evolutionRef. [13]. P(t,s) measures the probability that the average
of fluctuating interfaces or for undestanding the behavior of &1gn, Sa/(t) =(1/t) [ sgrih(x, to+t') —h(x, to)]dt’, remains al-
collection of stochastic spin variables. To be specific, weways above a particular valigeup to timet measured from
mention thatP,(t) and ¢, are thetemporalpersistence prob- the initial timet,. It turns out thaP(t,s) provides an infinite
ability and exponent, respectively, since we also disspss ~ family of temporal persistence exponen#s), associated
tial persistencd®,(x) and the corresponding exponeft with the power-law decay oPy(t,s) observed to exist at
Of particular interest in the field of surface growth phe-large time scales for systems belonging to different univer-
nomena is the role played by the dynamics of interfacesality classeqg14] relevant for surface growth. In the limit
which are governed by thermal fluctuations. An illustratives— 1, the exponent of persistent large deviations reaches the
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value of the nontrivial persistence exponent, i.&(s=1) P,(x,S) = Prob{S,(x') = s, Ox < x}. (3
=6,. We note that the concept of persistent large deviations _ _ . .
naturally generalizes the concept of persistence exponeNte Provide numerical evidence showing ttiglx,s) has a
from a single discrete exponedi characterizing the univer- POWer-law behavior fox<L, whereL is the typical length
sality class to a more general and deeper concept of a cogc@l€ in the numerical simulatiorise., system sizg inde-
tinuous function g(s), of the persistent exponents character-Pendent of the choice of the average sign paramgter
izing the stochastic dynamiqs. _ P,(%,8) o X ), (4)

The dynamics of the spatially extended systems with fluc-
tuations governed by stochastic differential equations can behere the spatial persistent large deviations expoig(s)
further elucidated by looking, in addition to the statistical depends continuously on the paramed¢hat appears in the
tools mentioned above, at tlspatial analog of the temporal definition of the probability. The importance &(x,s) lies
persistence, i.e., the spatial persistence probahilig;16, in the fact that it provides amfinite family of persistence
P,(x), and its associated exponen®,(x) represents the exponents, instead of only one exponent as in the case of
probability that the height stochastic variable, measured at B,(x). Obviously, P,(x,s=1) and its associated exponent
fixed timet, does not reach its initial value(xy,t) up to a  6,(s=1) are precisely the spatial persistence probability and
longer distancex measured from the initial positioxy. The-  the nontrivial persistence expone(tiss or 6gc, depending
oretical [15] and numerical studie§l6] indicate that the on the sampling procedure applied>tg), respectively. The
power-law decay oP,(x) is described by two different ex- opposite limits— -1 is trivial in the sense thalP,(x,s=
ponents, the steady-stdif9 and the finite initial conditions -1)=1 independent ok and as a consequenégs=-1)=0.
(61c) spatial persistence exponents depending on the selec- The s dependence of the temporal persistent large devia-
tion rules applied toky: (i) 6sgis obtained ifxy is sampled  tions exponents is known exactly for the simple random walk
from the entire set of the steady-state configurational sites;ase, which is one of the few analytically solved persistence
and(ii) g c is obtained ifxy is sampled from a subset of the problems[18],

steady-state sites characterized finite height and height
derivatives. The aim of this paper is to establish numerically 0(9) = 26,(1) arctam | -3 5)
the concept obpatial persistent large deviations probability, ! T -s’

P,(x,s) with —1=<s=<1, as a natural generalization of the
spatial persistence probability concept. We also show th
P,(x,s) measured for growth processes in the weII-studiec{
Edwards-Wilkinsor{17] universality clasg§described by Eg.
(1) with z=2] can be mapped isomorphically ony(t,s) of
the simple random walk stochastic problem. This mappin
possibility is inspired by the work of Majumdar and Bray
[15], who have shown in a recent Letter that theatial
persistence probability characteristics of growth process
involving the interfacial height stochastic variabkgx,t)
with the dynamics described by E@.) can be mapped onto
the temporal persistence characteristics of the “random
walk” processes of the typd™x/dt"=#(t), wheren=(z-d
+1)/2 and 5(t) is a white noise as well. The purpose of the
current paper is to show that this exact mapping, as expecte
works for the generalizedarge deviationgpersistence prob-

ability and the corresponding continuous family of persis-goy the entire set of the steady-state interfacial profile. The
tence exponents as well, and to numerically calcut(s)  merical integration of the stochastic equation is performed
for the important class of processes controlled by theging the simple forward-time centered-space representation
Edwards-Wilkinson equation. _ _ _ [19]. We have used numerical systems of dize 1000 and
We consider the average sign of the interfacial height stoge " have averaged the results over m&mi000 indepen-
chastic variable measured at a fixed tinwveith respect to the dent runs too btain convergent statistics.
original value corresponding to the initial positiag In Fig. 1, we show the results fd,(x,s) as a function of
« x for (1+1)-dimensional EW interfaces simulated numeri-
Su(X) = }J sgrih(Xo+ X',t) = h(Xo,t)]dx’ . (20  cally. We display ten log-log spatial persistent large devia-
XJo tions curves versus the distancéor ten values of the aver-
age sign parametes (i.e., s=+1,+0.8,...,-0.8 We
The spatial persistent large deviations probability is definedpbserve thatP(x,s)~x % for x<L/2, while for larger
in analogy with its temporal correspondent, as the probabilitwalues ofx and s=0 there is a downward deviation of the
that the average sig8,, remains persistently above a par- probability from the power-law behavior due to finite-size
ticular values, with —1<s=<1, up to a longer distance limitations. Except for the curve corresponding $=1,
measured from the initial positiox, which gives the usual spatial persistence exponésy

a‘[he mapping[15] between thetemporal properties of the
andom walkerlRW) problem and thespatial properties of
he Edwards-WilkinsoEW) fluctuating interfaces implies
that the expression of E¢5) also applies to the distribution
of the spatial persistent large deviations exponent as a func-
Yion of s. This conjecture is verified numerically in this study.
In this paper, we have carried out the first application of
the spatial persistent large deviations concept to the case of
e(S_L+1)-dimensionaI fluctuating interfaces characterized by
the EW dynamical equation. Using the configuration of the
interface corresponding to a fixed time of the order of the
time required by the interface width to saturéte., t~L?),
we have computed,(x,s) as the fraction of lattice sites
ith j=1,2,... L—-1) which maintained their stochastic
ariable S,, persistently above a fixesl value, up to a dis-
tancex;+x. The initial measurement points;, are sampled
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10 10 P 10 decay ofP(t,s) (for the RW problem and P(x,s) (for the EW
fluctuating interfaces respectively. The increment of the average
FIG. 1. Log-log plot ofP(x,s) vs x for the EW equation based sign parameter ids=0.1. The continuous curve represents the the-
on the direct numerical integration of E(l) with z=2, using a  oretical prediction of Eq(5).
system of sizd.=1000. The average sign parameter takes ten dif-
ferent values decreasing frosx1 (bottom curve to s=-0.8 (top persistent large deviations exponefis) are extracted from
curve) with an average sign differencks=0.2. All spatial persis- the linear regions of the log-log plots &(t,s) versust and
tent large deviations probabilities show power-law decay vs disthey are compared in Fig. 3 to the corresponding spatial set
tance forx<L/2. The finite-size effects are responsible for the of exponentss,(s) for the EW interfaces.
deviations of the probabilities from the power-law trend at large The level of agreement betwe@q(x, s) corresponding to
values ofx. the EW dynamical equation arR(t,s) of the RW case can

=0.50, in agreement with RefEl5,16, all the other curves _be seen in Fig. 3. To generate this figure we have used an
with s<1 provide information concerning spatial behavior Ncrement of the average sign paramefgrof 0.1. We ob-
of the interface fluctuations. serve that the two sets of exponenigs) and 6,(s), overlap

The temporal persistent large deviations probability of thevery well within the errors of our simulations, showing that
random walk model is shown in Fig. 2. We have used similathe mapping procedure involved in this study is perfectly
s values, as in the case &%(x,s) described aboveR,(t,s)  applicable. Both cases are in agreement with the theoretical
shows a clear power-law behavior versuswe find that Prediction of Eq.(5). We have also simulated a discrete sto-
P,(t,s=1) is characterized by an exponent of 0.50, in agreechastic growth model, the so-called Family model, which is

ment with the theoretical valué=1/2. Individual temporal theoretically known to exactly belong to the EW universality
class[11]. The Family model resultgnot shown hergfor

LA SR L P.(x,s) and 6,(s) are very similar to those shown in Fig. 1
since they have identical stochastic dynamics.

Despite the downward deviation of the probability
P.(x,s) from the power-law behavior due to finite-size limi-
tations, we have checked that larger system sizes would pro-
vide a wider range of distances over which the spatial per-
sistence large deviations exponent can be extracted with a
better precision. This can be seen in Fig. 4.

Another case of interest for epitaxial surface dynamics is
growth under surface diffusion minimizing the local curva-

. ture, which belongs asymptotically to the Mullins-Herring
- s=1 (MH) [21] universality clasdi.e., Eq. (1) with z=4]. The
o[- s=-08 ] exact mapping prediction by Majumdar and Bidp] sug-
gests that the spatial persistence properties ottmtinuum
102 — ......|1 L -m--l2 L ---ml3 version of the growth models belonging to this universality
10 10 10 10 class could be mapped onto the temporal persistence charac-
t teristics of the random acceleration problem described by the

FIG. 2. Log-log plot of simulatedP,(t,s) vst for the RW prob- stochastic random equatictifx/dt*=7(t) with an analyti-.
lem. The system size iE=500 and the average sign parameter Cally known exponent of,=1/4[20]. One expects to obtain
takes ten different values decreasing freml (bottom curvg to  0ss=0 and 6 c=1/4 [15] when measuring the steady-state
s=-0.8 (top curve with As=0.2 between successive probability and finite initial conditions regimes &f,(x), respectively, for
curves. All temporal persistent large deviations probabilities showthe Mullins-Herring surface growth dynamics. An example
power-law behavior vs time. of this case is thé1+1)-dimensional model introduced by
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FIG. 4. Log-log plot ofP,(x,s) for s=1 corresponding to the FIG. 5. Numerical results oPgc(X) and Ps¢x) for the LC
EW equation based on the direct numerical integration of (Fy.  discrete model with system size=200. The measurements are per-
with z=2, using three system sizes, as shown in the legend. Théormed from steady-state configuratiof®c(x) probabilities have
straight line represents the fit fdr=10" simulation, providing an been obtained by using three different band widths, as shown in the
exponent of 1/2. legend.Pr c(x) does not display a power-law behavior as a function

of x over the entire range of system size.

Kim and Das Sarm#§22]. This discrete solid-on-solid atom- . _ . _
istic model, the so-called larger curvatuieC) model[22], sults consistent Wlt_h_ the discrete LC m_odel. Also, it turns out
is known to belong asymptotically to the MH universality that similar pro_bablllty curves are obtained for solid-on-solid
class. As a consequence, we focus on the measurement BPdels belonging asymptotically to the molecular beam ep-
Prc(X) for the discrete LC moddR2], sincePsdx) is trivi-  1t@Xy universality cle_ISS{such as the(1+1)-d|m§n3|onal DT.
ally described by a null exponent. The definition Ryic(X) model [23]]. We believe that our problem with the spatial

involves the selection of the subset of sites characterized bjersistenceP,(x) for the LC model belonging to the MH
finite height and height derivatives. One possibility would beUniversality class[22] arises most likely from the severe
to sample over the subset of sites placed on the average levé[lite-size problems in simulating systems with large values
However, it turns out that a system with 200, which is the ~ (z=4) of the dynamical exponent. Large dynamical exponent
typical system size in our simulations, usually has only dmplies very slow lateral correlations, which considerably
couple of discrete positions on the average level. For thigomplicates studying steady-state behavior in the MH uni-
reason, we have sampled over all the lattice sifesith the ~ Vversality problem. In fact, this issue is very well known in
height variableimeasured with respect to the average Igvel traditional studies of dynamical scaling involving surface
within a band of values characterized by a width[i.e., ~Phenomena characterized by a large value of the dynamical
—w/2<h(x)) <w/2], wherew is taken to be smaller than the €xponenf24]. A large variety of stochastic discrete models
maximum magnitude of interface fluctuations. This selectiorshoW long-time transients and they cross over very slowly to

ensured the possibility of sampling over a reasonable numbdp€ir corresponding asymptotic behavior. Only extensive
of lattice sites presumably sufficient for good statistical re-Simulations of stochastic discrete models in the MH univer-

sults of P(x). sality class can provide the asymptotic dynamical scaling
In Fig. 5, we show thex dependence oPg(X) corre- associated with the continuous limit of E¢l) with z=4.

sponding to the LC discrete model for three valuesvo80, This forbids us froml pursging further measurements of
70, and 110, respectively. The steady-state probability i§’x,(X'S> for the MH universality clas§ and Checklng .the va-
shown for comparison. We note thag,(x) does not display lidity of the mapping procedure, which remains an interest-

the expected power-law behavior as a functiorkoAs the Ing open plroblem. h h ically that th o
bandwidthw increases, more and more lattice sites are in- 10 conclude, we have shown numerically that the spatia

cluded in the sampling subset, aRg(x) tends to reach the Persistent large deviations probability represents a possible
behavior displayed bsx). In addition, we observe that generahzauon of 'Fhe spatial persistence probability, provid-
when using a numerical system with=200, P<dx) has a ing a useful family of spatial exponents for the surfaqe
rather linear dependence anfor 50<x<200. The impos- growth phenomena. We have mapped these exponents into

sibility to recover the theoretically predicted behavior of the family of temporal persistent large deviations exponents

Prc(x) may be due to the reduced system size used in ou(?btalned from the evolution of a simple stochastic “random

imulati This limitation is i d by th : i fwalk” process. We have established the validity of this gen-
simulations. This fimiation 1S imposed by the requirement oty 57 ation for the case of fluctuating interfaces described by
measuring the probabilityPg,c(x) using an ensemble of

d i . h b hieved onlv b the Edwards-Wilkinson evolution equation. However, the
steady-state configurations that can 46 achieved only Dy Ugjmijar problem involving the Mullins-Herring universality
ing an extensive computational timelL®. We note that re-

duci : ina th 6 by af £ did class remains open since the corresponding discrete LC
ucing or increasing t e system Size by a actor o : r]Oinodel [22] simulation shows severe finite-size problems.
produce any qualitative change in the overall behavior o

Pric(X) or Psgx). In addition, we have checked that the di-
rect numerical integration of Eql) with z=4 provides re-

This work is partially supported by NSF-DMR-MRSEC
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